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Abstract, - The high-momentum components of the electron and positron Bloch waves in the
three alkali metals Li, Na, and K have been studied by comparing caleulations emploving the
fincar muffin tin orbital method and the independent particle model with accurate measurements
of the two-dimensional angular correlation of annihilation radiation, It is found that such an
analysis provides a sensitive test of electronic structure, and that electron—positron correlation
effects do not distort the high-momentum components in this example In any significant way.
It is shown that thermal effects due 1o Debye-Waller damping are important.

1. Introduction

Positrons shot into metals thermalize and then annihilate, mostly with the conduction
electrons. The usual annihilation process yields two gamma rays—each with energy of
mc? ~ 0.511 MeV—which are at 180° to each other in the centre of mass system. In the
laboratory, the slight departure from 180° yields directly the momentum of the electron—
positron pair, which, since the positron is thermalized, is the momentum of the electron
annihilated. The angular correlation of these annihilation photons has become a unique
and useful method for studying several features of solids ranging from simple metals to
complex compounds and alloys [1]. The first feature is of course the Fermi surface. Positron
annihilation work can yield dimensions of the Fermi surface with a precision better than
1% in favourable cases; not as good as the best de Haas—van Alphen area measurements
but easily comparable with most other techniques. Not requiring a long free path of the
electrons, the positron technique can also observe the Fermi surface of alloys.

Secondly the technique can also provide information about the lattice modulation of
the wave function. As first pointed out by DeBenedetti et af [2], these high-momentum
components (HMcCs) of the Bloch states can be observed directly.

Finally the technique can measure some features of the many-body interactions of the
electron gas. Ferrell [3] noted that the negative polarization cloud formed around the
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positron has a central density many times that of the average of the conduction electrons.
The enhanced density has a momentum distribution that is also somewhat different from
that of the valence electrons in the metal.

The alkali metals are simple enough that they provide good tests for the examination of
these features by modemn good resclution angular correlation experiments and modemn band
structure calculational methods. Considerable information on all the features mentioned
above has been drawn from the data already obtained from the conventional ‘long-slit’
apparatus for measuring one componeni of momentum. In this study we present band
structure calculations and two-dimensional momentum measurements for the metals lithium,
sodium, and potassium, and the temperature dependence of some of these data.

The alkali metals are particularly useful for testing calculations of the momentum density
p2(p) because of their relatively simple electronic structure. Calculations of the two-photon
momentum density 0?%(p) of the annihilation photons are commonly performed in the
independent particle model, i.e., the electron and positron wave functions are determined
using an effective one-particle potential. In generai this approximation yields satisfactory
results. However, careful analyses [4-8] of experimental data have established that a many-
body enhancement factor of the type proposed by Kahana and Carbotte [9-11] improves the
agreement between experiment and theory in the first Brillouin zone. Hence the question
arises of what way the Umklapp components in the higher Brillouin zones are affected by
many-body interactions. Hede and Carbotte [12] were the first to approach this problem
theoretically. They concluded that the enhancement of the HMCs was similar in value and
in momentum dependence to that of the central part of the distribution. Fujiwara et al
{13, 14] studied a two-band nearly free electron modet and found that either enhancement
or ‘dehancement’ (i.e. diminution) of the higher components could occur, depending on the
relative importance of the intraband and interband transitions, In the alkali metals with their
half filled bands, intraband transitions are possible and dominate the enhancement process,
leading to an enhancement in higher zones similar to that of the central zone. A different
conclusion was reached by Sormann and Puff [15] who found considerable dehancement in
higher zones.

Systematic and detailed experimental investigations of enhancement in higher zones are
scarce. The first two-dimensional data for Al [16] showed that the intensity of conduction
band Umklapp components agreed well with orthogonalized plane wave predictions,
implying that the higher momentum components are enhanced by a similar amount to
the lower-momentum part of the distribution. Similar conclusions were reached in the case
of Cu [17], but a recent study of Ni [6] suggests that the situation in transition metals may
be more complicated. These complications in the enhancement factor may be caused by
the nature of the wave function itself as shown by Fujiwara er af [13, 14].

The core contribution in the momentum distribution of photons from positrons
annihilating in alkali metals is not easily understood. As most calculations of the core
distributions are wider than those measured, experimentalists sometimes prefer to use
momenturn distributions similar to those observed in solid He, Ne, and Ar coresponding to
Li, Na, and K [7,8]. The reason for the discrepancy remains unresolved. It is sometimes
suggested that electron—positron correlation effects are responsible and perhaps the inevitable
oxidation may also contribute. We suggest that the Debye—Waller factor may account for
part of the problem. To date it has not been included in these studies of alkali metals despite
the small masses involved and the high (reduced) iemperature of some of the experimental
work. A modified approach to applying the Debye—Waller factor is proposed.

In section 2 we describe the theoretical background needed to discuss our results, with
a special mention of temperature effects for which we propose a modified description.
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Section 3 is devoted to band spucture caleulations performed using the linear muffin
tin orbital (LMTO) method. Section 4 contains the description of the experiment and a
presentation of the results. In section 5 we discuss the calculated and observed HMCs of the
wave functions in terms of the atomic orbital character of these functions. A few preliminary
results of this part of the work have been published [7, 18], but a complete account of the
entire work is needed and is presented in this paper. Finally we discuss how these results
change with temperature. Our conclusions are summarized in section 6.

2. Theory

2.1. Momentum distribution of annihilation photons

The two-dimensional angular correlation of positron annihilation radiation is given by

Nps2 py) = f () dp, M

where p(p) is the two-photon momentum distributionf given in the independent particle
approximation by

P =Y

Qce

2
f explip - )W, (MW (r) dr (2)

and where ¥, ;(v) and W (7) are the electron and (thermalized) positron wave functions.
The sum is over all the occupied (k, j) electronic states where k is the wave vector and j
is the band index. In the (LMTO) representation [19-21] the wave functions are taken to be

U(r) =Y iap) V(T Re(Eg j, ) ()
im

and
W (r) = Rj(E*,7) (4)

where the a,’f,;’ are coefficients of eigenvectors, ¥),, the spherical harmonic functions, R; the
I-state radial electron wave function and Ry the / = 0 wave function of the positron in its
lowest state. It should be noted that the annihilation photon momentumn distribution differs
from that of the electrons by the positron wave function which appears in equation (2).

The photon momentum distribution defined in equation (2) may be expressed in a plane
wave expansion as

p(p) = constant x ) 1Ck /(G)(p — k- G) &)
k.j

where the Cy, ;(G) are the Fourier coefficients in the plane wave expansion of the product
of the electron and positron wave functions:

Wi Wy =Y Cp (G)explitk + &) - 7). (6
G

T From here onward we drop the superscript 2y.
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Figure 1. Measured and calculated momentum distributions of photons from positrons
annihilating in Li, Na, and K. The vertical scale has been expanded to display the HMCs of

the electron—positron wave function product. The central portion has been cut-off at 4% or 8%
of the height at the origin.

In order to obtain the plane wave coefficients Ci ;(G) from the LMTO function a
correction is needed to account for the overlapping spheres [22], Thus we have

Ce /(G = MG X Q)
Gr
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Figure 1. (Continued)

where

. 4 3]1(|G - G"]Rws)
M r = G — G’ . dr = -—R3
6.¢ -/s.phcm exp[ ( ) 1‘] ws |G - G'| RWS

3

, , Rws .
x8 = an E a Yk + @) f Ri(Eg,;, )RS (1) j(\k + G'lryr?ar.
I 0 i

Here, radial integrations are performed over the Wigner-Seitz radius Rys.
It is now possible to write the following expression for p(p):

p(p) =constant x Y > [Bm(p)?  p=k+G
ki G

where

1k Rws N I
Bun(p) = 4x Y Mglgap Vim(k + G) fo Ry(Eyj, )RS (7) (& + G |r)r* dr.
Gr
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(10)

(11)-

These equations are useful to understand the !-character of the various parts of the HMCs of

the wave functions.

2.2. Electron-positron correlation effects

The interactions between the positron and all the electrons are known to modify appreciably
the independent particle picture for metals. The lifetime is an order of magnitude shorter, and
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the momentum distribution of photons from positrons annihilating with conduction electrons
in alkali metals differs slightly from that expected from free electron theory [4, 23-28], We
will use the simple description first given by Kahana and Carbotte [9-11] some thirty years
ago

p(P} = e(IpDp"™ () (12)
where €(p) is called the enhancement factor and has the approximate form
e(p) = a+b(p/pe)’ + clp/ pe)*. (13)

The careful analysis by Hyodo et al [8] shows that this description fits the data better than
more recent calculations.

2.3. Thermal effects and the Debye—Waller factor

There are several kinds of thermal effects that change the characteristic properties of positron
annihilation [29]. We shall discuss here mainly two: thermal expansion of the crystal lattice
and thermal vibrations of the ions about their equilibrium positions. The former, the increase
in lattice size with temperature, can be included by performing the calculations for a different
lattice constant appropriate to each temperature. Alternatively, if the band structure does
not change significantly with lattice expansion a simple renormalization may account for
this effect.

It is much more difficult to include the effect of thermal vibrations of ions because
both positrons and electrons are affected. In contrast with x-ray scattering in which the
electrons doing most of the scattering are closely associated with the nucleus, positrons
are mostly in interstitial regions and annihilate with electrons least attached to the nuclei.
Furthermore, the wavelength of the positron probe is about one order of magnitude larger
than the iattice constant while the x-ray wavelength is comparable to or smaller than the
interatomic distance. Because of these facts the effect of thermal vibrations on positron
annihilation should be more carefully analysed. Brandt ef af [30] were the first to investigate
these effects. According to their ideas thermal vibrations modify the annihilation photon
momentum distribution in the same way as in x-ray measurements. This is expressed as

plp) = Z ICr ;(G) [Pexp[—2W(G, T)é(p — k — G) (14)

k.J
where Cy ;(G) are the plane wave coefficients for the frozen lattice described in the previous
section. The factor exp[—2W (G, T)] is known as the Debye—Waller factor. It reduces the

contribution of the zone corresponding to the reciprocal lattice vector &. For cubic crystals
the function W can be expressed as [31]

W(G, T} = 3(n*G*/Mksp)[+ + (T/6p)9(80/ T)] (15)

where M is the atomic mass of the ion, 8p the Debye temperature, kg the Boltzmann
constant and ¢{(x) the Debye function. When described by equation (15) the Debye—Waller
factor is constant in each zone. For filled bands this leads to a discontinuity at the zone
boundary. To avoid this problem we propose to use a p-dependent function W(p, T}, which

is a continuous function defined everywhere in reciprocal space. We can write W(p, T) as
follows:

W(p,T) = 3(2n/ac)" (1%/ Mksto) [ + (T/60)(60/ T) 4 (16)

with p = G+ k = (27 /ap)q and ay the lattice constant. We shall use both equation (15)
and equation (16) to analyse the data and shall find that equation (16) gives a somewhat
better agreement with experiment,
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Figure 2. From the observational data shown in figure 1: contours of projected momentum
density for the higher momentum components of the distribution for Li (above) and K (below).
The contours in the first zone resnlt from a subtraction process and have no significance.
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Figure 3. Projection of extended Brillouin zones in
P the (110) plane showing the location of profiles to be
X9 displayed in figures 4, 5, and 6,

3. Calculations

The band structures have been calculated self-consistently using the LMTO method [19, 20].
The valence basis set was semirelativistic and included s, p, d, and f states. The core levels
were fully relativistic and have been included in the iteration to self-consistency. In the case
of K a completely non-relativistic calculation has also been performed but no noticeable
difference was found compared to the semi-relativistic calculation. The d states play an
important role in the HMCs of the wave functions in K despite the largely free electron like
properties of this metal. A non-optimal choice of Ej {the energy at which the linearized d
orbital is calculated) more than 0.5 Ryd higher than Ep leads to noticeable changes in the
results for the HMCs. In the results presented here Ey lies approximately 0.2 Ryd above Ep
in all cases. In these calculations the errors due to linearization are very small, Table 1
gives the partial /-character of the valence electron distribution in the different metals.

Table 1. Angular momentum decomposition of the valence electron charge obtained from the
LMTO calculations.

Li Na K

0.509 0.612 0.604
0.457 0.341 0.348
0.031 0.044 0.046
0.003 0.003 0.002

oLt @

The final band structures were calculated on a fine mesh of 3311 k points in
the irreducible Brillouin zone, thereby enabling an accurate interpolation of the higher
momentum component results. The electron—positron matrix element was calculated using
the electron and positron LMTOQ wave functions in the independent particle model (1PM).
Corrections for the overlap of the Wigner—Seitz zones were included. The effect of
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temperature has been taken into account by inclusior of the Debye-Waller factor. Table 2
shows that these temperature effects vary substantially in the alkali metals and cannot
be neglected. Even at O K there is a sizable reduction of the HMCs due to zero point
motion. Finally, to examine the effect of thermal expansion, self-consistent band structure
and annihilation momentum distributions were calculated for two lattice parameters (9.882
and 9.916 au) for K.

Table 2. The Debye temperature 6p and the Debye—Waller factor exp(—2W) (equation (13))
for the first two Bmcs at 0 and 75 K [48].

Y exp(-2W)  exp(-2W)
(K) (a/2m)G 0K 75K
Li 363 110 0.91 0.88
200 0.83 0.78
Na 150 110 0.95 0.50
200 0.91 0.81
K 100 110 0.97 0.92
200 0.95 0.84

In another set of calculations the Komringa—Kohn—Rostoker (XKKR) method [7,18, 32]
was used to calculate the band structure and the photon momentum distribution.

4. Experiment and data

The measurements were performed using a high-resolution two dimensional angular
correlation apparatus [33]. The distance from specimen to detector was 10.5 m and the
positron source was 50 mCi of 2Na. The growing of the single crystals has been described
for Li and Na in [34] and [35] and for K in [8]. The data were obtained a1 98 K for Li,
at 60 K for Na, and at 4.2 K for K. The temperatures for Li and Na were chosen to avoid
the martinsitic phase transitions in these metals. The measurements for K were repeated at
75 K to verify that the reduction of the HMCs is well described by the Debye—Waller factor.

The instrumental resolution function was determined with care by recording the
positronivm peak in quartz on a very fine mesh (0.05 mrad). We found that it can be
described to a good approximation as the sum of a Gaussian function and a Lorentzian
function. From this fitting a resolution function was obtained that reproduced accurately
the smearing of the Fermi cut off. The parameters describing this resolution function are
given in table 3. It should be noted that a tail in the positronium peak was also observed
by Fujiwara [36].

Table 3. Experimental parameters. The total resclution function R 1s givenby R = xg+{1-x)L,
where g and L represent its Gaussian and Lorentzian components, and x and 1 — x denote the
respective weights,

Li Na K K
Temperature (K) 98+2 605 42 75+2
Total number of counts 22 % 107 7.6 % 107 6.7 x 107 5.4 %107
rFwHM of Gaussian {mrad) (.42 % 0.42 0.35 x 0.33 023 x 0.20 (.38 x 0.37
FwHM of Lorentzian (mrad) 0.20 x 0.20 0.20 x 0.20 0.20 x 0.20 0.20 x 0.20

x 0.50 0.65 0.75 0.65
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Figure 4. Measured and cafculated momentum intensities afong the profile lines shown in

figure 3, The low momeatum points in profiles 2a, 2b, and 2c¢ are the residue of the central
zone subtraction and have no significance. Li at 98 K; LMTO calculation,

Positrons anmihilate with the conduction electrons and with the electrons of the ion
cores, Lit, Na*, and K*. The purpose of this paper is to examine the conduction electrons
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and thus it is necessary to subtract the core contribution from the total data recorded. We
have first tried to fit the data with the calculated core contribution and then with momentum
distributions constructed from angular comelation measurements in the rare gases [37).
Neither procedure gave a very safisfactory result. However, in the case of one electron
metals another procedure is possible. In certain orientations of the reciprocal lattice the
vatious Fermi spheres of the higher momentum pasts of the wave function can be precisely
superimposed leaving clear unobstructed ‘views’ through reciprocal space. An example
of this is shown in figure 3, which we shall discuss later. In these unobstructed regions
the momentum distribution has no contribution from the conduction electrons and the data
are thus a direct measure of the core intensity at that point. These intensities can be
fitted to a smooth function, assumed to be rotationally invariant and subtracted numerically.
This procedure should separate the HMCs with a precision of 0.5% of the peak intensity
without affecting their shape significantly. The experimental resuits with the core part
thus subtracted are shown in figure 1 in isometric projection. To display the HMCs of this
measured momentum distribution, the vertical scale has been expanded and the projection
of the nearly free electron Fermi surface cut off at 4% and 8% of the central peak height.
In addition a theoretical calculation of the momentum distribution is displayed using the
same scale.

In figure 2 the same data are shown plotted as intensity contours for Li and K. Note
that these are original data not even folded about the symmetry axes.

5. Results and discussion

The alkali metals are the most free electron like of all metals, The Fermi surfaces are nearly
spherical; in K the Fermi wave vector kg has a length variation of less than 0.25% [38],
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Figure 5. As in figure 4. Na at 60 K; LMT0O calculation.

and for Na the variation is less than 0.17% [38]. For Li these data yield the best dimensions
of the Fermi surface which show 2.8+ 0.6% variation having twelve ‘bumps’ in the [110]
directions [35]. The small differences that exist between these metals can best be seen in
their electron wave functions. Since the effect of the crystal lattice on these nearly free
electrons is small it must be looked for not in the slight diminution of the principal plane
wave itself, but rather in the creation in the wave function of harmonics of the periodic
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crystal potential. These higher harmonics are observed in the momentum distributions in
Li, Na, and K.

In the following, section 5.1 contains a discussion of the HMCs of the wave functions,
comparing experimental and theoretical results. Section 5.2 presents a discussion of the
effects of thermal motion of the ions on the momenturn distributions. Section 5.3 contains
a summary of other deductions from this experiment.

5.1, Higher-momentum components in Li, Na, and K

The experimental data shown in figures 1 and 2 are presented in this section as intensity
profiles taken along the many dashed lines of figure 3, and compared directly with the
appropriate calculated results for p(p) integrated along a line at right angles to this (110)
plane, i.e. the integral equation (1), These measurements and calculations are presented
in figures 4, 5, and 6 for Li, Na, and K respectively. The calculated results were
obtained using the LMTO band structure method. The calculations obtained in this way
are normalized to the peak intensity of the experimental data after inclusion of the Debye—
Waller factor (see below), and subtraction of the core electron contribution from the data
as described in section 4. It can be seen immediately that the HMCs of these three metals
have different shapes and intensities and, remarkably, that the theory. is able to provide a
good understanding of the differences from one metal to another. A full discussion of this
will follow after some comments on the effect of electron—positron correlations.

The first and remarkable cbservation is that the independent particle model yields HMCs
of the wave functions very much like the experimental data. Various models of the electron
potential give results that are slightly different one from another, but all are of the correct
general shape and all are within about 15% of the measured intensities, This conclusion
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was also reached by Sormann and Sob [39] who used different potentials and the augmented
plane wave method and compared their calculations with the experimental results presented
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in this paper.

Since these several independent particle calculations yield good agreement with observed
HMCs, we conclude that the general effect of electron—positron correlations must be the same
in the higher zones as it is in the first zone.

In contrast, very little can be said about the momentum dependence of the enhancement
in the higher zones. A constant enhancement independent of momentum might be
compatible with the data while a very strong momentum dependence would probably not
fit the observations. A careful analysis of the data in the first zone to obtain the momentum
dependence of enhancement has not been done, but we note that a preliminary analysis [18]
seems to imply an enhancement function in agreement with the results of Hyodo et al [8].
They found that the early work of Kahana and Carborte [9-11] fits the data beiter than
more recent calculations. If it could be shown that the many bady effects of creating the
polarization cloud around the positron did not alter the higher momentum components of the
wave functions, or altered them in a known manner, then the shapes and intensity of these
components would become a sensitive test of the lattice potential models for single-particle
descriptions of electrons in these simple metals,

An additional test of the independent particle model calculations was made by
performing KKR band calculations and subsequent momentum density determinations. The
KKR band calculations are quite different from the LMTO calculations in that they were not
self-consistent and did not include f states [7). The subsequent analysis of the HMCs was
made exactly as for the LMTO results. Despite the differences between the two methods,
the resulting HMCs are quite similar. The KKR result also agrees well with experiment,
although the amplitudes are slightly smaller than the EMTO calculation. This difference may
be due to the fact that the f-states are missing in the KKR basis set. As shown below, the
f-contribution is small, but its relative importance increases in the HMC. The KKR-LMTO
comparison confirms that the IPM calculations describe the HMCs well, which indicates that
the important positron-glectron correlation effects do not disturb the IPM results much in
this simple one-electron metal.
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equation {11)) along the {110} direction in Li, Na, and K.

Despite the similarities in the occupied bands in Li, Na, and K, the higher-momentum
components of Li are strikingly different in shape from those in Na and K. The reason
for this can be understood from an angular decomposition of the momentum distributions.
Figure 7 shows the quantities ) By,(p), which upon summation with respect to ! and
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squaring vield p(p) along the [110] direction. Symmetry plays an important role but the
detailed behaviour of the wave functions cannot be overlooked. In Li and Na the lowest
level at N (the centre of the nearest zone face) is a pure p level.f Hence at N the s and
d terms are zero by symmetry and only the p term is present, Owing to its odd parity
this term is discontinuous at N, Away from N the 5 and d terms increase again and in the
second Briliovin zone they begin to interfere destructively with the large p term. In Li this
gives rise to the particular shape of the HMC in that zone.} The case of Na is very similar
except that the s and d terms are larger than in Li. They are therefore more successful in
the destructive interference with the p term, making the sum over all / inside the Fermi
surface in the second zone nearly independent of momentum. In K however the situation
is quite different. The s and d like states at N have now become the lowest level due to
the presence of the 3d band not far above the Fermi level. Thus at the N point the s and d
terms may be large while the p term must pass through zero. The interference between the
s, p, and d terms now results in a zero in their sum somewhere between N and I' and thus
a minimum in the momentum density. This minimum occurs over a surface that crosses the
[110] axis near (0.62, 0.62, 0)(2x/a) and is reminiscent of the so called Cooper minimum
in photoemission spectroscopy [40,41]. This minimum in the momentum density is not
directly visible in the data because of the integration over one dimension.

T On the basis of the pseudopotential arguments of Cohen and Heine [49] and Heine and Weaire [30] (see also [517)
one would expect the lowest level to be p like for all alkali metals. Note that the reciprocal latfice vectots are at
¢/2ks = 1,14 for monovalent ACC elements, while the pseudopotential becomes positive at g/2kr = 0.8-0.9 and
hence V119 > 0, making the lowest level at N a p bonding state. However, in the progression from Li to Na to K,
the d band moves down to a position just above the Fermi level. In doing so the d-like Ny level is pushed down
by hybridization. Somewhere near Na the N level passes through the Ny level and becomes the lowest one.

i A Hartree—Fock calculation of the electron momentum density in Li by Dovesi ef af [52]) has yielded comparable
results.
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Figure 8. As in figure 4. Potassium at 75 K; Lm0 calculation,

In the above discussion the small f-terms have been ignored. Figure 7 however shows
that their importance grows at high momentum. As mentioned, this f-contribution may be
one reason why the KKR and LMTO calculations are slightly different. In all three metals
the f component is important near the N point and whenever the s, p, and d terms cancel.
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5.2, Thermal effects on momentum distributions

In this section we discuss K because it has been measured at various temperatures with both
the long slit [8] and the two-dimensional geometry of the present work.

We describe first the calculations we have performed to evaluate the temperature effects.
Then we discuss the two dimensional measurements for potassium at 4 K and 75 K, and
long-slit data at these and higher temperatures.

‘We have performed two self-consistent band structure calculations for K using a lattice
dimension of 9.882 au for T = 4.2 K, and 9916 au for T = 91 K. The momentum
distributions obtained are very similar. We note an overall increase of 1% in the second
calculation, reflecting the contraction of the reciprocal lattice with temperature, The increase
is about 1% everywhere except for the [110] zone, which remained nearly constant. This
non-uniform variation shows that the wave functions are a function of the lattice spacing.

We show in figure 8 the comparison between the calculation for @ = 9.916 au, using
equation {16) for the Debye—Waller effect, and the experimental data measured at 75 K.
Comparison of figures § and 6 shows the expected decrease in intensity as the temperature is
raised, both in the calculation and in the experimental data. A measurement of the integrated
intensity of the HMC at 4.2 K and 75 K yields a ratio of 0.89 & 0.04 , in fair agreement
with values calculated from equations (15) and (16} of 0.95 and (.93, respectively. While
somewhat better agreement with intensities is achieved, our data are not precise enough
to distinguish the small change in shape of the HMC’s expected when using equation (16)
instead of equation (15) chiefly because of uncertainties in the core subtraction process.

We have also compared our calculations of the Debye—Waller factor with the long-slit
data of Hyodo ez al [8] at 91 K, 199 K, and 298 K. Their data show a decrease in intensity
of the higher momentum components as temperature rises, similar to and slightly larger
than that calculated from our equation (16).

It will be important in the future to go beyond the underlying assumption of the same
value of W for all electrons. A more general treatment is necessary, one which separates
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the motion of electrons (and the positron) based on their binding to the nuclei along the
lines of [42].

Our analysis shows that thermal effects are large and may even influence data at low
temperature when the ionic masses are smatl, and their zero-point motion is large.

5.3. Other deductions from data

53.1. Fermi surface of Li. These data have been analysed to determine the anisotropy of
the Fermi surface. As expected, the radius was larger in the (110) directions than in other
directions, the maximum difference being 2.8 & 0.6% [35]. This is in general agreement
with calculations using a non-local energy-dependent mass operator in the context of the
density functional formalism [43]. (Another experiment by positron annihilation has been
analysed to give 3.5 + 0.3% [44].)

5.3.2. Charge density waves in K. [45]. The existence of charge density waves may
be seen if such waves are aligned and lie in the preferred [110] direction [46]. In this
situation a bulge of about 6% should be expected [47] whereas our observations show
sphericity to 0.6%. If 20% of the charge density waves were aligned and the remainder
random, they might still be observed as an additional smearing of the Fermi surface. The
cbserved smearing is compatible with the experimental resolution. No extra smearing due
to a possible charge density wave is detectable,

6. Conclusions

This paper has presented accurate measurements of the two dimensional projection of the
momentum distribution of photons from positrons annihilating in the alkali metals Li, Na,
and K. The data exhibit interesting structure especially in the HMCs of the electron—positron
wave function. Although the band structure and momentum density in the first zone are
very similar in the three alkali metals studied, there are important differences between
these metals in the higher zones. Calculations of the momentum density in these higher
zones, employing the independent particle model and based on local density electron band
structures, are in excellent general agreement with experimental results. The comparisons
show that this experimental method is more sensitive to details of the lattice potential than
any other technigue.

The momentum distributions also show changes as the temperature is varied. We suggest
that both the magnitude and temperature dependence of this effect are different for valence
and core electrons, and that a deeper analysis of the Debye~Waller effect is needed.

In conclusion, the positron annihilation technique is shown to be useful to test details
of lattice potentials for electrons and positrons, to examine some of the many-body electron
gas effects, and to probe thermal effects on the motion of electrons, Finally, these data are

also the best illustrations available of the Bloch structure of wave functions in a periodic
lattice,
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